

#### Summary of Science Requirements: Biosphere

Irena Hajnsek & Tandem-L Science Team Tandem-L Science Coordinator



#### What do I have captured from the 4 day workshop?

- Very active science community
- → High quality science content
- → Straggling with models and data and their uncertainties
- → and what I will connect to this workshop: 'come out of the scientific comfort zone'

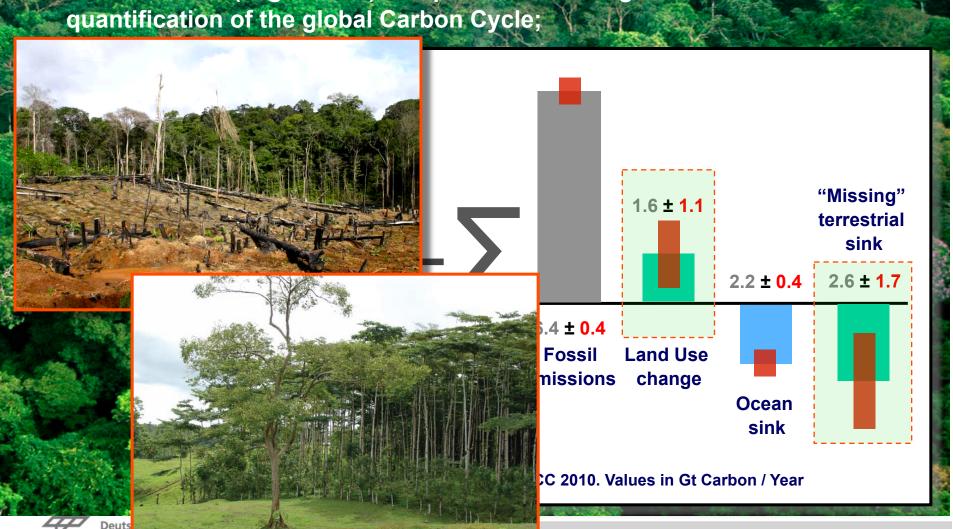
#### Simplified summary of science requirements for forest characterisation

- Mapping disturbance
- Capturing heterogeneity
- Monitoring events/ fast changes

#### Translation into a RS system requirement

- → High resolution system
- Frequent observation
- → Long term monitoring



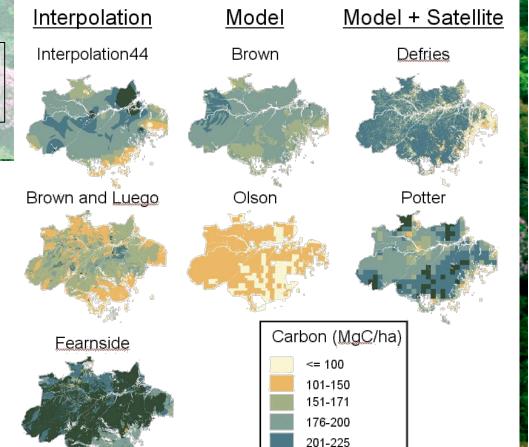

European and US scientist have similar needs



in der Helmholtz-Gemeinschaft

#### Carbon Cycle and (Forest-)Biomass

The terrestrial (vegetation-) component is the largest unknown in the quantification of the global Carbon Cycle;




#### Carbon Cycle and (Forest-)Biomass

Biomass characterises the spatial distribution of Carbon

(~50% of the biomass is C);

Biomass-<u>Inventory</u> & -<u>Dynamics</u> are today - in a global scale - unknown!



#### Amazonas basin



... the estimates vary between 39 to 93 GtC

226+

#### Carbon Cycle and (Forest-)Biomass

Changing climate conditions can convert vegetation:

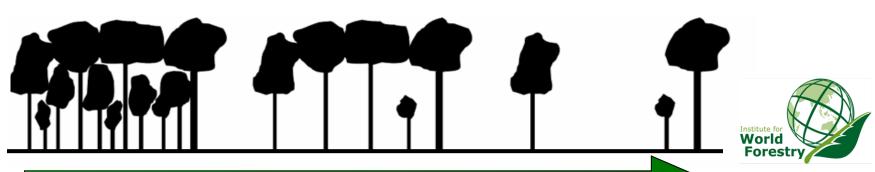
In dry conditions forest has been reported to become a Carbon source!

- → Europe 2003 with +0.5 Gt C (from -0.4Gt C)
- → Amazon 2005 with +1.6 Gt C (from -1.3Gt C)

Cias et al. 2005 Nature, Phillipps et al. 2009 Science

In comparison: Total C emission in the Atmosphere is ~ 3 Gt C / Year




# Biosphere **Biodiversity & Forest** 80% of the terrestrial Biodiversity lives in - primarily tropical - Forest-**Ecosystems.**

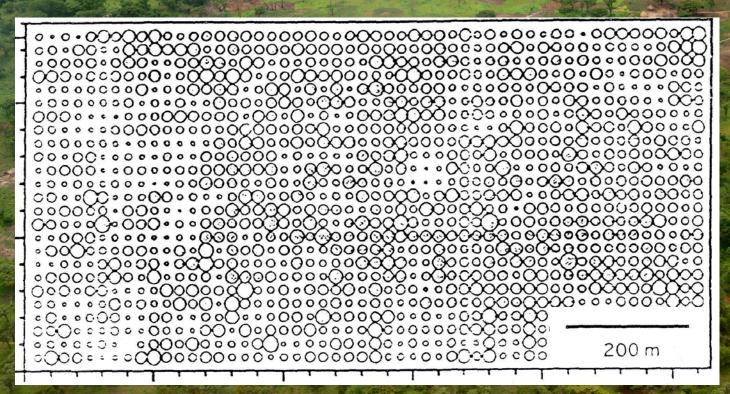
Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

#### **Biodiversity & Forest**

- 80% of the terrestrial Biodiversity lives in primarily tropical Forest-Ecosystems.
- Besides the reduction of forested areas (deforestation), forest fragmentation and degradation impacts biodiversity seriously.

Structural degradation of forest (caused by legal / illegal logging, fire and other human activities) is not possible to be detected with conventional remote sensing techniques.




**Structural Degradation** 



#### Challenge

High spatial variability of local biomass (due to natural disturbance regimes and human activities) and structure (vertical & horizontal):

Example: Lowland tropical forest in Lambir, Malaysia (Yoneda et al. 1996, 50ha, 200.000 trees)



Size of circles indicate local biomass (20x20 m, 1300 plots)

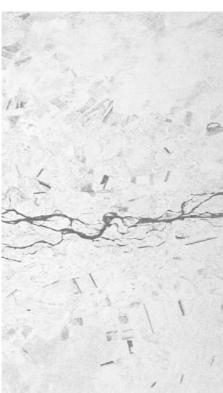


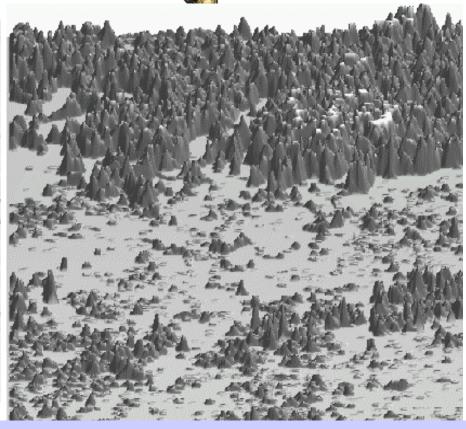
### Summary BIOSPHERE (Forest)

| Info<br>Layer         | Background                                                                        | Users                                                          | Questions                                                                                                                                                               | Applications                                                                                                                                                                                                       | Products                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Level 1<br>(global)   | Unknown forest biomass for understanding of global C-Cycle                        | Scientist,<br>Ecologist,<br>Climate<br>Research                | Quantification of biomass/C storage & change                                                                                                                            | Annual Inventory;<br>Forest height &<br>structure as key<br>variable                                                                                                                                               | Annual carbon, biomass & error quantification                                                                             |
| Level 2<br>(regional) | Forest & environmental policy Certification Info on global level is only patchy   | Government,<br>Politicians,<br>NGO's                           | State of forest<br>resources & change;<br>agreement with political<br>goals; problematic<br>spots (defor., diversity,<br>endangered people);<br>socio-economical traits | Status & change of biomass, carbon-stock, structure (vertical/horizontal); identify / quantify logging & large scale damage                                                                                        | Status & change<br>maps of<br>biomass, carbon<br>stock, height,<br>structure                                              |
| Level 3<br>(local)    | Sustainability Income for forest owners Provide production & protection functions | Managers of large private & public enterprises & forest unions | Info on regional/local<br>state of forest<br>resources & change;<br>basis for operational<br>management deicsion<br>(high resolution)                                   | High-resolution-<br>status & change of<br>biomass, structure<br>(storm/snow risk,<br>habitat); height (as<br>a site quality<br>indicator, risk); on<br>demand info.; pre-<br>selection of areas<br>for inventories | Depending on IT structure of user; in general info. layers are needed for management, precision & high spatial resolution |

#### Applications (Ecosystem / Management / Monitoring) Attributes/ Used Min. Mapping Avg. **Observation** Coverage Description **Application Parameter Uncertainties** Unit [m] **Frequency** Carbon Biomass/ Climate 100x100 20-30% yearly global dynamic Research B. change Illegal logging, Height change / 10-20 % / ± 1 **Forest** 20x20-100x1 2 weekly to storm, insects structure regional Disturbance monthly (salvage layer 00 change logging), fire Stock 1x 5 years **Biomass** 10%-(20%) 50x50 regional F. Inventory estimation F. Stand Biomass / F. 10% 10x10-20x20 1x 5 years local management delineation Height planning Site quality Combination F. Height $\sim 2.5 - 5\%$ 20x20-50x50 1 - 5 years local estimation with forest age Soil Moisture 50x50-Soil Moisture 4 classes On request regional Fire warning 100x100 under Forest **Forest** F. structure / Preservation ± 1 layer 3 veg. layer yearly regional **Monitoring** of ecosystems change Water **Underline** ~ 4m 20x20 5 years regional Water dynamic dynamic topography F. Structure Adapted to the **Flooding** 50x50-100x1 monthly change / topo. local weather 20-30% regional 00 events seasonally conditions Change


| Biosphere: Basic Observables |          |                                           |                             |                          |                         |                                                     |
|------------------------------|----------|-------------------------------------------|-----------------------------|--------------------------|-------------------------|-----------------------------------------------------|
| Attributes/<br>Parameters    | Coverage | Avg.<br>Uncertainti<br>es                 | Min.<br>Mapping<br>Unit [m] | Observation<br>Frequency | Observation<br>Interval | Description                                         |
|                              | global   | <b>~ 10%</b><br>(-20%)                    | 30x30- <b>50x50</b>         | 12 months                | > 5 years               | For biomass estimation                              |
| Forest<br>Height             | regional | <b>~ 10%</b><br>(-20%)                    | <b>20x20</b> –30x30         | 3-5 years                | > 5 years               | For forest inventory                                |
|                              | local    | (2.5) – <b>10</b> %                       | <<10x10-<br><b>20x20</b>    | 2-5 years                | > 5 years               | Site quality estimates                              |
| Forest<br>structure          | global   | 3 v-layers<br>5-10m                       | 30x30 <b>–50x50</b>         | seasonal                 | > 5 years               | Contribution<br>to biomass,<br>Forest<br>monitoring |
|                              | regional | 3 v-layers<br>5-10m                       | <b>20x20</b> –30x30         | on demand                | > 5 years               | Disturbance,<br>Monitoring                          |
| Forest<br>Biomass            | global   | <b>≥20t/ha</b><br><b>then 20</b> -<br>30% | 70x70-<br><b>100x100</b>    | 12 months                | > 5 years               | Carbon<br>stock                                     |
| Бюшаѕѕ                       | regional | 10 – 15t/ha<br>≤or 20%                    | ≤ 50x50                     | 5 years                  | > 5 years               | For forest inventory                                |
| Underlying topography        | global   | < 4 m                                     | 30x30- <b>50x50</b>         | 12 months                | > 5 years               | Water<br>dynamic                                    |


in der Helmholtz-Gemeinschaft


| Biosphere: Change Detection        |          |                                       |                          |                          |                         |                         |
|------------------------------------|----------|---------------------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| Attributes/<br>Parameters          | Coverage | Avg.<br>Uncertainties                 | Min. Mapping<br>Unit [m] | Observation<br>Frequency | Observation<br>Interval | Description             |
| Forest<br>Height<br>Change         | global   | From 1m to<br>20 - 30%<br>(of change) | 30x30- <b>50x50</b>      | yearly                   | >5 years                | For biomass<br>change   |
|                                    | regional | From 1m to<br>20 - 30%<br>(of change) | <b>20x20</b> –30x30      | on demand                | >5 years                | For F.<br>disturbance   |
| Forest                             | global   | ± 1 layer of change                   | 30x30- <b>50x50</b>      | yearly                   | >5 years                | Contribution to biomass |
| Structure<br>Change                | regional | ± 1 layer of change                   | <b>20x20</b> –30x30      | on demand                | >5 years                | Forest<br>monitoring    |
| Forest<br>Biomass                  | global   | From 5t/ha to<br>30%<br>(of change)   | 70x70-<br><b>100x100</b> | yearly                   | >5 years                | Carbon<br>change        |
| Change                             | regional | From 5t/ha 20<br>- 30%<br>(of change) | ≤ 50x50                  | 5 years                  | >5 years                | For F.<br>inventory     |
| Underlying<br>topography<br>change | regional | From 1m to 20 - 30% (of change)       | 30x30- <b>50x50</b>      | on demand                | >5 years                | Flooding<br>events      |

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

#### The beginning of Pol-InSAR...





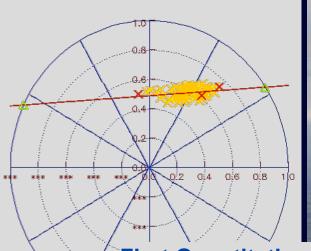


L-band / Pauli RGB



1994: SIR-C / X-SAR acquires the first POL-InSAR data

1996: First publication on Pol-InSAR.


1998: First Pol-InSAR forest height estimation.

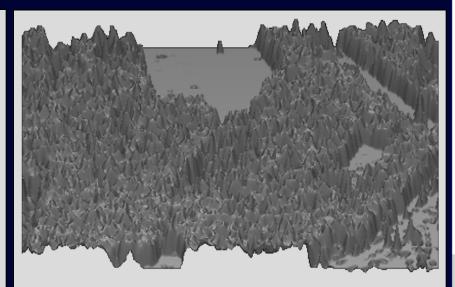




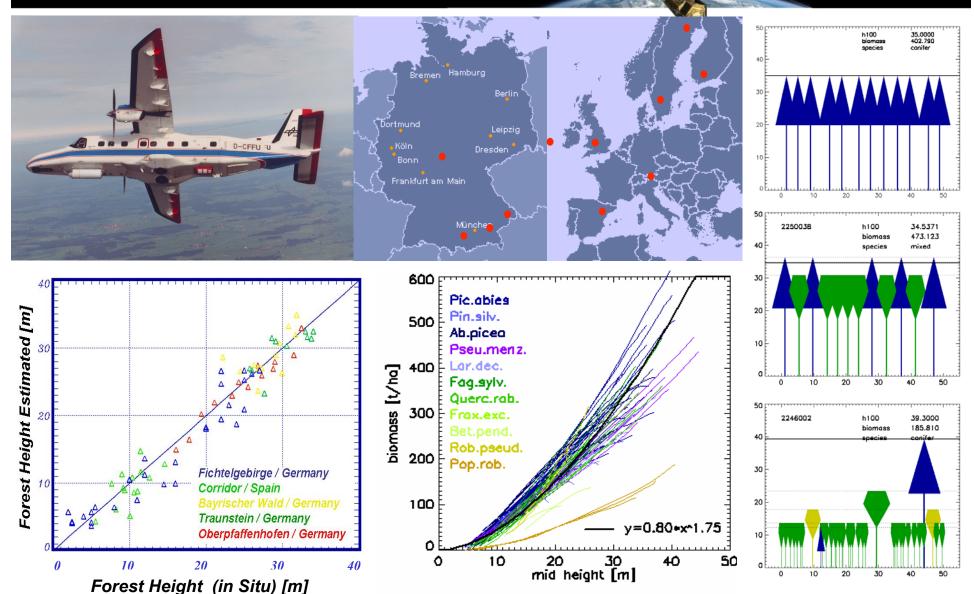
## Pol-InSAR Forest Height Inversion (2000): DLR Site








First Quantitative Pol-InSAR Demonstration:


Year: 2000 Sensor: E-SAR (DLR)

**Test Site: Oberpfaffenhofen / Germany** 



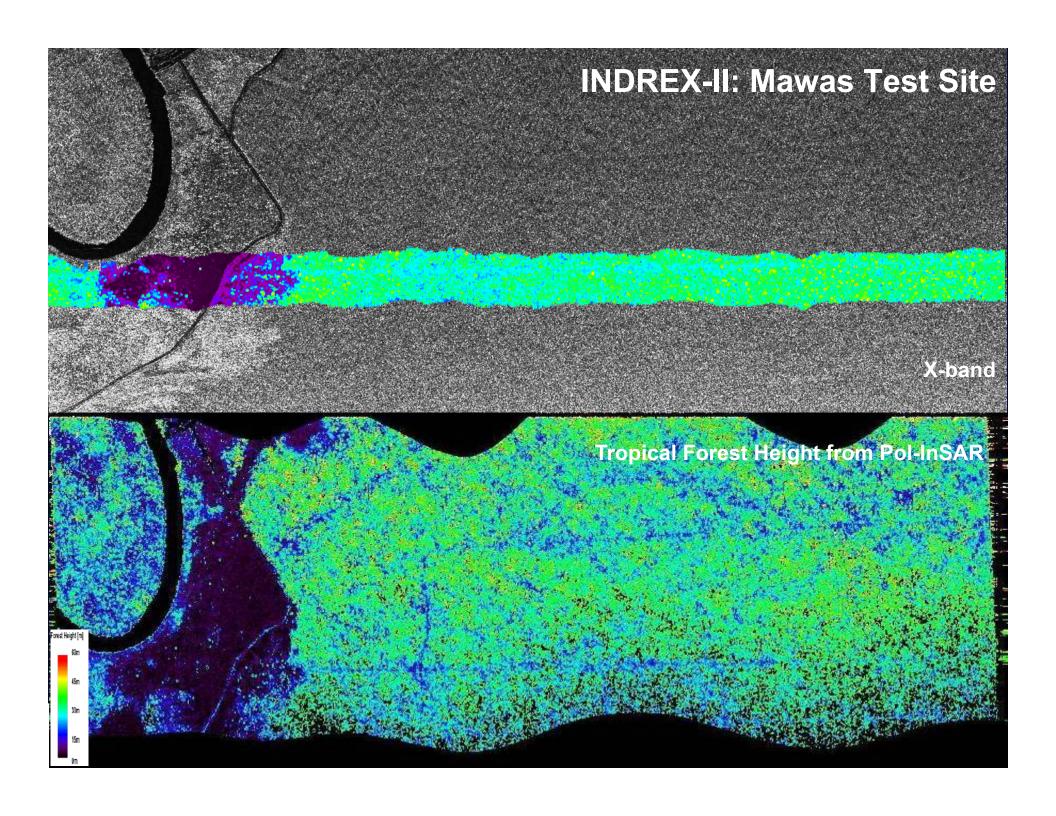


### Pol-InSAR Forest Height Inversion (2000-2003)

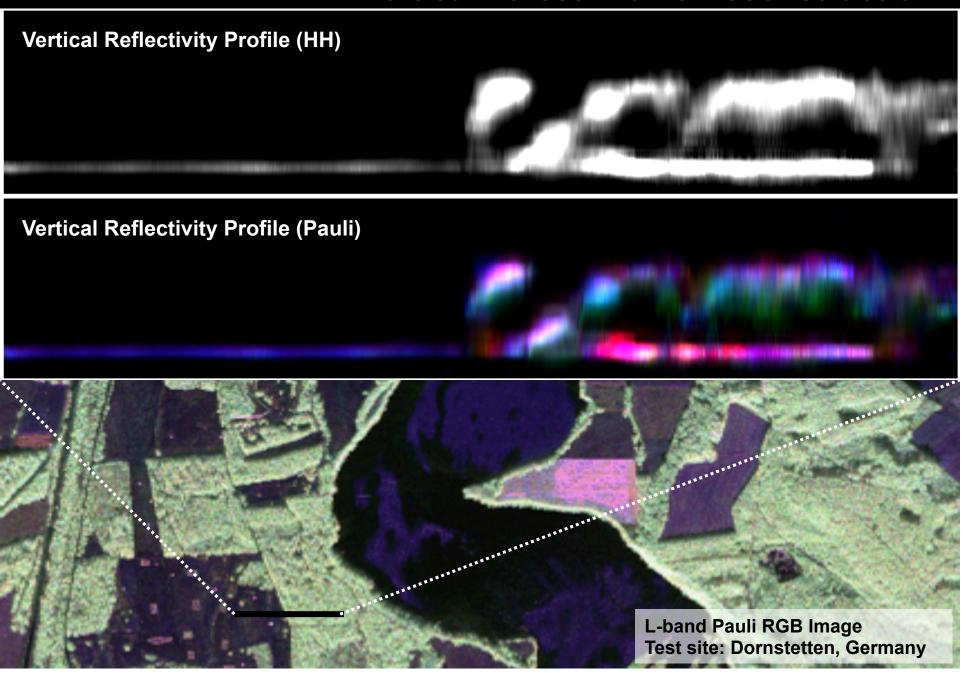




#### INDREX-II: 2004

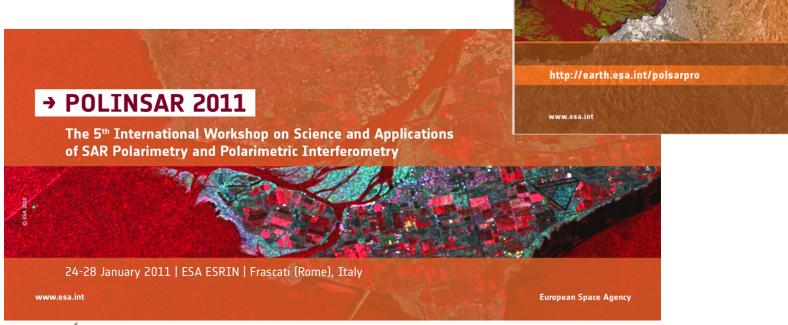



## Validation of the Pol-InSAR techniques in tropical forest conditions:


- Canopy Penetration @ L- and P-band;
- → Sensitivity & Inversion validation;
- → Height 2 Biomass alometry evaluation.



# AIRBORNE SAR CAMPAIGN OVER TROPICAL FOREST INDONESIA RADAR EXPERI Mawas-Gunung Meratus-Sungai Wain-Balikpapan Bay Mangrove-Samboja Lestari TOVETTEER, 2004




#### **Vertical Forest Profile Reconstruction**



#### Advancement of Pol-InSAR in Europe

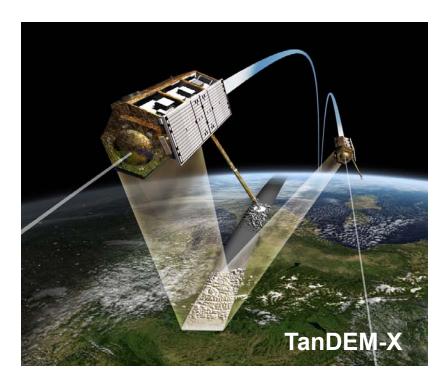
- First development in Germany and strong national support
- → Support of the European Space Agency:
  - PolinSAR Workshops (2003, 2005, 2009, 2011)
  - → PolSAR Pro 4.2 (free software)



→ POLSARPRO v. 4.0

The Polarimetric SAR Data Processing and Educational Tool

ENTER


EXIT

**European Space Agency** 



#### Advancement of Pol-InSAR in Europe

- First development in Germany and strong National support
- → Support of the European Space Agency:
  - PolinSAR Workshops (2003, 2005, 2009, 2011)
  - → PolSAR Pro 4.2 (free software)
- Outcome of the technology is a German national mission TanDEM-X (single pass SAR interferometer)
- A logic follow on is the German mission proposal of Tandem-L



## Tandem-L

|             | Tandem-L Science Products         | Resolution  | Revisit               |
|-------------|-----------------------------------|-------------|-----------------------|
|             | Forest height                     |             |                       |
| Biosphere   | Above ground biomass              | 20 - 50 m   | 16 days -<br>seasonal |
|             | Vertical forest structure         |             |                       |
|             | Plate tectonics                   |             |                       |
| Geo-/       | Volcanoes                         | 5 - 100 m   | Weekly*               |
| Lithosphere | Landslides                        | 0 - 100 111 |                       |
|             | Deformation                       |             |                       |
| TATATA      | Glacier flow                      |             | weekly*               |
|             | Soil moisture                     |             | weekly*               |
| Cryo- &     | Water level change                | 50 - 500 m  | on<br>demand          |
| Hydrosphere | Snow water equivalent             |             | seasonal              |
|             | Ice structure change              |             | seasonal              |
|             | Ocean currents                    |             | weekly*               |
| Global      | Digital terrain and surface model | 20 - 50 m   | yearly                |







Nationalpark

**BAYERISCHE** 

Nachhaltig Wirtschaften.

Bayerischer Wald











Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich











Bundesanstalt für Wasserbau Kompetenz für die Wasserstraßen

des Landes Nordrhein-Westfalen



Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz



AWI ∰



Friedrich-Schiller-Universität Jena





















University of Zurich<sup>∪zн</sup>



Bundesanstalt für Geowissenschaften



















**GFZ** 

Helmholtz-Zentrum







UNIVERSITY

OF MANITOBA















**Aalto University** 









EDIVERSE

CHNINE













ÉCOLE POLYTECHNIQUE

WAGENINGEN UR

For quality of life





School of Science and Technology

GAMMA REMOTE SENSING **British** Antarctic Survey

YONSEI UNIVERSITY







**ENVIRONMENTAL** GWEIEKE













